
Urban Tracker: Multiple Object Tracking in Urban Mixed Traffic

Jean-Philippe Jodoin, Guillaume-Alexandre Bilodeau
LITIV lab., Dept. of computer & software eng.
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Abstract

In this paper, we study the problem of detecting and
tracking multiple objects of various types in outdoor urban
traffic scenes. This problem is especially challenging due
to the large variation of road user appearances. To handle
that variation, our system uses background subtraction to
detect moving objects. In order to build the object tracks,
an object model is built and updated through time inside a
state machine using feature points and spatial information.
When an occlusion occurs between multiple objects, the po-
sitions of feature points at previous observations are used to
estimate the positions and sizes of the individual occluded
objects. Our Urban Tracker algorithm is validated on four
outdoor urban videos involving mixed traffic that includes
pedestrians, cars, large vehicles, etc. Our method compares
favorably to a current state of the art feature-based tracker
for urban traffic scenes on pedestrians and mixed traffic.

1. Introduction

Detecting and tracking moving objects is one of the most
important applications in computer vision. It is a vital tool
in fields such as surveillance, security and transportation. In
particular, video tracking is fostering new research in trans-
portation engineering, for example in the study of the be-
havior and the safety of all road users, whether motorized
or non-motorized, such as cars, cyclists and pedestrians [8].
New techniques are developed to perform road safety di-
agnosis based on the observation of road user interactions
without having to wait for accidents to occur [16]. Video
tracking allows acquiring more easily, at a lower cost and
more accurately, larger amounts of data than could be done
previously, typically manually. This leads to advances that
can only be achieved by mining large amounts of observa-
tional data.

Considerable research has been done on tracking since it
is a pillar of many video analysis techniques. Recent works

have mostly focused on surveillance and crowd monitoring.
These methods mostly rely on trained a pedestrian detec-
tor such as the one presented in [18] to localize the objects.
Other works focus on the associations of multiple detec-
tions like [4]. This type of methods works well to track
multiple pedestrians in complex scenes. Unfortunately, this
is not suited for urban tracking. Urban tracking has its own
challenges that cannot be easily addressed by these meth-
ods due to the large variety of road users such as pedestri-
ans, cyclists, cars, trucks, etc. All these objects have dif-
ferent shapes and appearances. If pedestrians have similar
shapes, their appearance, in particular the garment colors,
varies widely and they are non-rigid. Vehicles have differ-
ent colors and shapes, in particular when their pose changes
as they move through out the scene and they turn at inter-
sections. Tracking all possible road users in outdoor urban
traffic scenes would therefore require a large number of de-
tectors for the various types of objects and their main poses.
Although a multi-view approach to car detection has been
proposed by [14], it is difficult to generalize to all kinds
of vehicles and road users. Tracking by detection in traffic
scenes is only practical if the variety of poses and road user
types is limited, e.g. for highways. Because of this, only
the motion information can be used to detect the objects.
This task can be achieved using either optical flow or back-
ground subtraction. In both cases, the resulting detections
are either fragmented or merged which must be dealt with
by the tracking algorithm. Recent methods based on object
detectors cannot address these problems as they assume that
only extra or missing detections are possible.

The objective of this work is to design a tracker able to
handle multiple objects of various shapes and sizes. Since
we want to collect information for road safety at intersec-
tions, we focus on outdoor urban traffic scenes captured
using a single camera. We propose a tracking approach
with the flexibility to detect and track multiple types of
moving objects without prior knowledge of those objects.
It uses moving object detection (background subtraction)
that allows handling multiple objects while being able to
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Figure 1. Sample results of Urban Tracker on scenes of interest. a)
Sherbrooke, b) Rouen, c) St-Marc and d) Rene-Levesque

detect and track any unforeseen type of road users. How-
ever, background subtraction complicates data association
because objects may occlude each other or become frag-
mented. To handle fragmentation and occlusion, we pro-
pose an object model that is based on feature points and
spatial information computed on the detected area. Data as-
sociation is performed using this model for each detected
object. The object can be thus followed even in the pres-
ence of partial occlusions and recovered after a short total
occlusion. We named our tracker: Urban Tracker. Some
sample images of processed scenes with results are shown
in figure 1.

2. Related Work
Road user tracking is a popular application for track-

ing algorithms. There are two main types of applications:
highway traffic and urban traffic scenes. Tracking vehi-
cles on highways is easier than in urban areas as there are
fewer types of objects (only motorized vehicles of various
sizes), little change in the orientation of the vehicles and
few known entry and exit points. Cameras are also usu-
ally located much higher than in urban scenes, which re-
duces the occurrence of occlusions. Tracking vehicles on
highways is more challenging when the traffic is slower
because the inter-vehicle space is significantly reduced, in-
creasing the occlusion between vehicles. In outdoor urban
areas, traffic includes also pedestrians and cyclists (and even
wheelchairs), and more complicated trajectories, with ve-
hicles turning at intersections, stopping and parking, and
many more entry and exit points in the scene. Differ-
ent computer vision methods have thus been developed for
these two types of applications.

Coifman et al. [5] use the Kanade-Lucas-Tomasi tracker
[17] to find good feature points and track them. The fea-
ture tracks are then grouped based on common motion con-
straints by computing the difference between the minimal

and the maximal distance between two tracks. This works
well for a highway even in the presence of partial occlusions
since the common motion constraint allows distinguishing
moving cars as long as they move at sufficiently different
speeds. Jun et al. [9] used background subtraction to esti-
mate the vehicle size. They used a watershed segmentation
technique to over-segment the vehicle. The over-segmented
patches are then merged using the common motion infor-
mation of tracked features points. This allows to segment
vehicles correctly even in the presence of partial occlusion.

Saunier et al. [15] adapted the work by Coifman et al.
[5] to track all types of road users in outdoor urban inter-
sections, by detecting continuously new features and adding
them to current feature groups. The challenge is to find the
right parameters to segment objects moving at similar ve-
locities, while at the same time not over-segmenting smaller
non-rigid objects such as pedestrians. Another tracking al-
gorithm for urban traffic scenes is described by Kim et al.
[10]. This method combines background subtraction and
feature tracking approaches with a multi-level clustering al-
gorithm based on Expectation-Maximization (EM) to han-
dle the various object sizes in the scene. The resulting algo-
rithm tracks various road users such as pedestrians, vehicles
and bicycles online and the results can then be manually
corrected in a graphical interface.

Our online tracking algorithm, Urban Tracker, also com-
bines feature tracking and background subtraction. In con-
trast to the work in [10], which uses Expectation Maximiza-
tion to cluster feature trajectories in objects, we rely instead
on background subtraction for the same task. We thus con-
sider features as groups inside common regions instead of
groups with common motion. This allows us to discrimi-
nate between vehicles having common trajectory and speed.
A state machine and interframe blob association are used
to handle the occlusion and segmentation problems of the
background subtraction. Finally, this feature grouping pro-
cedure allows us to achieve better tracking results on non-
rigid object than methods relying on common motion crite-
ria like [15].

3. Methodology
Our tracking algorithm is a combination of blob and fea-

ture tracking. Blobs are used for size estimation, feature
grouping and data association, while features are used for
data association and occlusion resolution. The high-level
diagram of our algorithm is shown in figure 2. The method
consists in three main steps applied on each frame. The first
step is blob extraction where the foreground blobs are ex-
tracted in the video frame and blob models are calculated.
The second step is the blob tracking. It involves the track-
ing of the individual blobs from one frame to the next. The
last step is the object tracking. It is based on the notion of
object tracks and track states. An object track is a sequence
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Figure 2. High-level view of the system

of temporal detections of a real world object. For the rest
of this paper, we will be referring to the term object tracks
as tracks. One or many blobs at each frame may represent
a track. The state of an object track is used for tracking and
represents its life cycle in the scene (entering, exiting, lost,
etc.). This step uses the blob association information to re-
solve the ambiguity between the blobs and the object tracks:
it is the step of the algorithm that is responsible for resolv-
ing occlusion, blob fragmentation and for updating the ob-
ject model. In this section, the three steps of the algorithm
will be presented in more details.

3.1. Blob extraction

The first step of blob extraction consists in applying a
background subtraction algorithm to the input video frames.
To decrease noise, we use a Gaussian blur with a 5x5 kernel
before doing the background subtraction. We then apply the
ViBe background subtraction method [1]. This method was
selected because it is fast and it is among the top performers
on the original changedetection.net benchmark [7]. Once
the foreground pixels are detected, we compute the spatially
connected pixels to get blobs. This gives us a mask of the
moving blobs in the scene. We then slightly dilate this mask
to fill the holes. Blob smaller than Tm pixels are filtered
out. We have slightly modified the ViBe method to better
handle intermittent object motion that occurs often in urban
scenes since vehicles will park or stop on red light. At each
frame, the blobs are analyzed to verify if the internal pixel
intensity changed enough (to assess if the blob is moving or
not). This verification is done by calculating the absolute
pixel intensity difference between the current frame and the
previous one in each blob. We then count the number of
pixels with an intensity change (npc) over a threshold of
θ (we have used θ = 4 in order to accept pixel variation
due to noise in our video). If too few pixels have changed
(npc/area(blob) < 0.1), the ViBe background model is
updated with the pixels of the current frame for all pixels
located inside the blob in order to remove the “ghost blob”.
The last step of blob extraction is to compute the model of
each blob for the next step of interframe blob association as

described in section 3.2.
The blob model is composed of the blob size, the blob

position and the feature points located inside it. The BRISK
feature point detector is used with 3 octaves and a detection
threshold of 10 [11]. This number of octaves is the default
value in OpenCV [3]. A detection threshold of 10 is used
instead of the default value of 30 because the latter did not
yield enough points on the objects to correctly resolve the
occlusions. However, this lower threshold value tends to
create a higher number of false matches because the points
are less discriminative. The feature point descriptor is the
FREAK binary descriptor [13] since it shows superior per-
formance to the BRISK descriptor. This descriptor presents
some invariance to rotation and scale while being fast to cal-
culate due to its binary nature. It was used with 3 octaves
like BRISK and a scaling pattern of 22 px. This gives us
a good robustness to scale changes, which is useful when
an object reappears after an occlusion. The disadvantage
of those parameters is that we have a featureless border of
44 px (as represented in figure 3) due to FREAK’s scaling
pattern size.

The track model is composed of a sequence of blob mod-
els. Unmatched keypoints from the concatened blob models
are removed in order to keep only the truly useful keypoints.

Figure 3. Feature positions when using the FREAK descriptor with
a 22 px scaling pattern

3.2. Blob tracking

Blob tracking can be considered as low-level tracking
since it deals with the temporal association between blobs
in two consecutive frames. The segmentation issues and oc-
clusion problems are dealt with in the object track building
part described in section 3.3. We are interested in the fol-
lowing blob tracking events: blobs entering the scene, blobs
exiting the scene, lost blobs, fusion between multiple blobs
and the splitting of a blob into multiple smaller blobs. The
blob model defined in the previous section is used to detect
these events. The first step is to calculate the correspon-
dence between the descriptors of the feature points located
inside the set of blobs Bt−1 in the previous frame and the
set of blobsBt in the current frame using the Hamming dis-
tance. The tests defined in [12], the ratio and the symmetry
test, are run for each pair of points to filter bad matches.



The ratio test computes the distance ratio between the best
match over the second best match in order to filter out less
distinctive point matches. The symmetry test consists in
verifying if the matching is mutual for the two points in the
pair. Finally, to avoid bad matches, associations are consid-
ered valid only if matching blobs have a minimum of four
feature matches.

This results in 1 → 1, 1 → N , N → 1, 0 → 1 and
1 → 0 associations on a per blob basis with N > 1. Since
we have a significant featureless border and because smaller
objects will have fewer features, we also measure blob over-
lap for the blobs that do not possess enough feature points.
This is only applied to blobs that are unmatched using fea-
tures since features are more reliable for association, espe-
cially when multiple objects are near each other. The di-
mension and position of the blob model are used to calculate
the area of overlap between the unmatched blobs Bu

t−1 and
Bu

t and the matched ones Bm
t−1 and Bm

t . If a blob overlaps
with many other blobs, we keep the one with the biggest
area of overlap and add the overlap association to the as-
sociations obtained using feature matches. The remaining
blobs with no overlap Bu

t−1 are considered lost and Bu
t are

considered as new blobs. All 1 → N associations are then
considered a split, 1 → 1 a direct blob track and N → 1 a
merge. There are no N →M associations by construction.

3.3. Track building

The track building part of the algorithm is responsible
for the association between the blobs and the object tracks.
This allows coping with the difficulties of real data com-
ing from an uncontrolled environment. It handles overseg-
mentation and undersegmentation of blobs and manages the
lifecycle of object tracks, using the state machine shown in
figure 4. The transitions are determined by the blob associ-
ations.

3.3.1 Track states

A track stays in the normal state as long as it is composed
of 1→ 1 blob associations (transition a6). The track model
is updated and the state remains unchanged. If the blob as-
sociated to an object track in the normal state disappears
(transition a5, 1 → 0 association), the object track state is
changed to lost. If the object track remains lost for more
than a given number of frames (Nr), this track is deleted
from the list of tracked objects (transition a12). When a
new unassociated blob is detected, two actions are possible:

1. If the blob model is similar (contains 4 pairs of key-
point matches) to a track in the lost state, the track state
becomes normal again (transition a11). 2. If it cannot be
linked to a lost track, a new object track is created in the
hypothesis state (transition a0, 0 → 1 association). If no
association can be found in the next 3 frames, it will be
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Figure 4. Object state machine

deleted directly (transition a2, 1 → 0 association). This al-
lows us to remove noise and unstable tracks. If the object is
successfully tracked for 3 frames, the state of the track will
be changed to normal (transition a1, 1→ 1 association).

If multiple blobs associated to existing tracks are occlud-
ing each other (transition a3, associationN → 1), we create
a group of tracks with all the track models, and each object
track will be updated separately in the group (more details
at section 3.3.2). If the group of tracks splits (association
1 → N ), the tracks that are split from the group may go in
the normal state (transition a4) or remain inside the group
(transition a8). If the association 1→ N is linked to a track
in the normal state, this might be a case of initial under-
segmentation (two object tracks entering in the same blob
in the scene) or a case of fragmentation. The split track
will be separated and created in the normal state (transition
a6). If a track touches the border of the scene, it changes
to the exiting state (transition a7). If it is not tracked in the
next frame, it goes in the deleted state (transition a9). If
the track changes direction and stops touching the border, a
verification of its model is done to verify that it is still the
same track (we require three feature matches for the model
to be considered the same). If it is the same track, the track
state changes back to normal (transition a10). If it is a dif-
ferent track, the track is deleted and a new track is created.
The exiting state is needed since the associations found on
the border of the images are calculated only using the blob
shape (due to the featureless border). Since exiting tracks
often cross entering tracks, we need to do further verifica-
tion to make sure they are still the same object.



3.3.2 Undersegmentation handling

A blob is considered undersegmented if it is associated to
multiple tracks. This situation can occur when multiple ob-
jects are occluding each other or because of the misclas-
sification of background pixels as foreground. If multi-
ple tracks enter the scene in the same blob and they split
later while they are visible, we will create new object tracks
(transitions a6, a8), and we will use the model of each blob
to retrieve the movement history of the tracks before they
split. On the other hand, if multiple distinct tracks merge
inside a single blob (transition a3), we will be able to fol-
low them individually by using the model that was learned
before they merged. The feature matches between the fea-
ture points of each object track model and the new merged
blob are computed: matching points of the new blob will
be added to a list of previously matching features and the
track model is updated with them. In order to evaluate the
position of the bounding box of individual objects, we will
use the matching features. This process is illustrated on fig-
ure 5.

a)

b)

c)

Figure 5. Blob estimation process: a) Previous observation bound-
ing boxes with points b) Undersegmented blob with current points
c) Estimated bounding boxes

Figure 5a) represents the previous observation with fea-
ture points and known bounding box. In figure 5b) we can
see the undersegmented blob with the same features. For all
of theses features, we calculate their position relative to the
centroid of the bounding box in a). This relative position is
added to their current position in b) in order to get an esti-
mate of the centroid position. We repeat the process for all
features and get a list of estimated positions of the centroid.
In order to reduce noise, we select the median values on the
x and y axis to estimate the box centroid. The dimension of
the bounding box is also the median size of previous obser-
vations (before the object became part of the group of object
in the undersegmented blob). The final bounding boxes of
each track can be seen on figure 5c).

Figure 6. Oversegmentation when a pedestrian enters the scene

3.3.3 Oversegmentation handling

An oversegmented track happens when multiple blobs rep-
resent the same track. Oversegmentation of object tracks
can occur due to: 1) errors in the background subtraction,
2) concave objects entering the scene (as shown in figure 6)
or 3) static objects occluding in the scene. To resolve cases
1) and 2), we use the hypothesis state as a temporal buffer
before creating permanent tracks (transition a1). This gives
time to the background subtraction to stabilize and since
tracks in the hypothesis state are automatically merged with
spatially close tracks, the track is less likely to be split into
several parts. To resolve 3), we use spatial information and
the result of the blob association. Before splitting a track,
we verify that the blobs diverge enough spatially by dilating
them by a factor Db (10 % in our case). If there is an over-
lap between the blobs, the split is delayed since the object
tracks are still too close to conclude that they are two sepa-
rate tracks. The use of the bounding boxes and a dilatation
factor makes this test more robust, which is crucial in urban
scenes where there is considerable variation in object size.

3.3.4 Exiting tracks

Exiting tracks are problematic because their blob may
merge with entering tracks (as seen in figure 7). The fea-
tureless border of the image complicates this issue even fur-
ther because the quality of blob association is more error
prone in this area, as it cannot rely on the keypoints. Since
this case is quite common in urban scenes, the exiting state
is introduced. As soon as a track touches the border of the
image, its state changes to exiting. From that point on, three
situations may occur: 1) the track leaves the scene, 2) the
track does not leave the scene and starts going back toward
the middle of the scene, 3) the track leaves the scene and
its blob is merged with an entering track. Case 1 requires
no particular processing. The critical issue is to distinguish
case 2 from 3. If the track leaves the border and goes to-
ward the middle, its identity is verified using feature points.
Objects in this situation need to have at least three feature
points to keep their current identity (case 2), or else we as-
sume it is case 3 and the object track is given a new id. In
case 3, the history of the new track is recovered from the
previous track model. In order to estimate the frame that



a) b) c)
Figure 7. Id change problem when an object exits and another en-
ters at the same time. These are cropped images of the right side
of the scene. a) The red car leaves the scene. b) The white bus is
part of the same blob as the red car. c) The white bus takes the id
of the red car.

the blob became more of the new track and less of the ex-
iting one, we look at the track blobs when they were in the
exiting state. The frame we are looking for is the one when
the object blob was the smallest since it indicates the instant
when the blob size started to be modified by the entering
track. This allows us to separate the blob of the entering
track from the exiting track.

4. Results
Urban Tracker was tested on four video sequences and

compared with another tracker called Traffic Intelligence
(TI) [15]1.

4.1. Evaluation Methodology

The four outdoor test sequences are shown in figure 1.
The Sherbrooke video is a 1001-frame 800x600 sequence
with cars, trucks and pedestrians moving at an intersec-
tion. There are 5 pedestrians and 15 cars in the annotated
video. The traffic is light but it still involves many occlu-
sions between the road users. The Rouen video sequence is
a 600-frame video with 11 pedestrians, 4 cars and 1 bicycle.
Multiple occlusions occur between pedestrians. The cam-
era angle is quite different from the Sherbrooke video. The
St-Marc sequence is a 1000-frame 1280x720 video of an
intersection that contains 7 cars, 2 bicycles and 19 pedestri-
ans. Interactions are similar to those of Rouen. Finally, the
Rene-Levesque sequence is a 1000-frame 1280x720 video
from a very high camera covering three intersections. The
farthest intersections and pedestrians were not annotated in
this video because the objects are very difficult to distin-
guish even by a human. The annotated part of the scene
contains 29 cars and 2 bicycles.

For all videos, each object is annotated as soon as it starts

1Available under an open source license at https://bitbucket.
org/Nicolas/trafficintelligence (revision 8f8f437 Septem-
ber 3th, 2013)

moving until it leaves the scene. An object leaving the scene
and reentering later is considered a different object. All
objects were annotated (id, center position, and bounding
box corners) even if they were only partially visible. Also,
a mask is applied on the Sherbrooke and Rene-Levesque
video to disable tracking outside the region of interest clos-
est to the camera.

The CLEAR MOT metrics are used to quantify the qual-
ity of the tracking [2]. They are composed of two main
metrics, the multiple object tracking precision (MOTP) and
the multiple object tracking accuracy (MOTA). The MOTP
is independent of tracking errors such as id changes and it
measures the average precision of the instantaneous object
matches, which can be estimated in two different ways. For
the evaluation of a tracker yielding a bounding box such as
Urban Tracker, the average of the bounding box overlaps
for all matching objects can be computed. For a tracker
yielding only a centroid position such as TI, the precision of
the tracker is the average distance between the centroid of
the ground truth bounding box and the tracker output cen-
troid. To compare with TI, we use the second definition.
The MOTA is a metric that takes into account the number
of misses, the number of false positives and id changes. To
calculate the metrics, a threshold must be set to evaluate the
maximum distance an object can be from the ground truth
object to be considered a valid match. For each video, the
threshold was chosen to impose a minimal overlap of 50 %,
like in the PASCAL VOC challenge [6], which translates
into a maximum diagonal distance of 90 px for Sherbrooke,
164 px for Rouen, 113 px for St-Marc and 24 px for Rene-
Levesque. Smaller MOTP values and larger MOTA values
reflect better performance.

4.2. Experimental Results

To generate the experimental results, we have selected
some parameters for each video for both algorithm. For Ur-
ban Tracker (UT), the parameters that were changed are the
number of frames to look for a lost object (Nr), the frag-
mentation factor (Db) and the minimum blob size (Tm).
The parameters used are reported in table 1. Our results
were obtained without any form of camera calibration. To
be as fair as possible, for TI, we have asked the authors
to provide us with good parameters for the test videos. An
homography was used with TI when available. The parame-
ters that were adjusted were the connection distance (dcon),
the segmentation distance (dseg) and the number of features
(nf ). The parameters for each dataset are reported in ta-
ble 2.

The results of each video are presented in table 3. We ob-
serve that the MOTA for UT are higher than TI. This can be
explained by the use of background subtraction which al-
lows us to detect objects of multiple types and sizes. The
MOTA of objects can vary by type because of the more

https://bitbucket.org/Nicolas/trafficintelligence
https://bitbucket.org/Nicolas/trafficintelligence


Video Parameters Homography
Sherbrooke Nr = 1160, Db = 0.1, Tm = 300 no

Rouen Nr = 150, Db = 0.7, Tm = 380 no
St-Marc Nr = 1160, Db = 0.1, Tm = 300 no

Rene-Levesque Nr = 900, Db = 0.2, Tm = 50 no
Table 1. Parameters used in UT with each video.

Video Parameters Homography
Sherbrooke dcon = 4 m, dseg = 1.7 m, nf=1000 yes

Rouen dcon = 25 px, dseg = 25 px, nf=1000 no
St-Marc dcon = 10 px, dseg = 40 px, nf=1000 no

Rene-Levesque dcon = 10 px, dseg = 40 px, nf=2000 no
Table 2. Parameters used for TI with each video.

complex interactions between the objects and the resulting
occlusions. Further analysis shows that the MOTA of TI
vary widely between the types of objects. This can be ex-
plained by the reliance on a grouping threshold that does not
handle well non-rigid objects and objects of varying sizes.
In these videos, parameters for TI were optimized for the
more frequent type of objects in the scene.

For the Sherbrooke video, UT groups two pedestrians
as one for the entire duration of the video since they stay
closely together. If we consider both pedestrians as one in
the ground truth, the MOTA for pedestrians increase from
0.6809 to 0.8764, which is very similar to the score for cars.
For Rouen and St-Marc, most of UT tracking errors are due
to grouping problems between pedestrians. UT has a bit
more difficulty to track cars in Rene-Levesque then in the
other videos. This is because we start tracking cars very
far from the camera while they occlude each other and it
takes some time for the algorithm to separate them. These
observations further confirm that the discrepancy between
the MOTA of pedestrians and cars for UT is caused by oc-
clusions between them and not because of their different
characteristics, appearnace, etc.

UT scores for bicycles are very high for Rouen and St-
Marc, and it is low for Rene-Levesque. This can be ex-
plained by the fact that since the camera is very high, one
of the two bicycles in Rene-Levesque is very small and dif-
ficult to detect (even for a human). So what we actually
have is one bicycle tracked correctly for all the sequence
while the other one remains undetected for almost all the
sequence. The same behavior can be observed with TI for
the Rene-Levesque video.

UT’s precision is higher than TI for most of the video and
type of object. Cases where the precision of UT is lower are
for the cars in the Sherbrooke video and the bicycles in the
Rouen video. For the cars in Sherbrooke, this can be ex-
plained by some bad estimation on the image boundaries
and the presence of shadows. For the bicycles in Rouen, the
slightly higher MOTP for TI can be explained by the shad-
ows deforming the blobs. For TI, the object types with a
low accuracy in tracking also suffer from a very low preci-
sion. This is a side effect of using threshold optimized for

specific object types. For instance, when we optimised the
threshold for pedestrians, only parts of the vehicles are then
tracked, which moves the centroid to the center of that part.

Method
UT TI [15]

Video Type MOTA MOTP MOTA MOTP

Sherb.
Cars 0.8928 10.53 px 0.8253 7.42 px

Pedestrians 0.6809 6.64 px 0.0141 11.98 px
All objects 0.7771 8.66 px 0.3841 7.54 px

Rouen

Cars 0.8965 9.73 px 0.1853 66.69 px
Pedestrians 0.8050 13.64 px 0.6467 20.04 px

Bicycles 0.9270 14.13 px 0.8686 13.11 px
All objects 0.8234 13.09 px 0.5885 24.20 px

St-Marc

Cars 0.8887 10.9 px -0.1778 38.99 px
Pedestrians 0.7216 4.99 px 0.6926 10.44 px

Bicycles 0.9895 6.70 px 0.8952 7.46 px
All objects 0.7567 5.97 px 0.6018 14.58 px

Rene-L.
Cars 0.8038 3.02 px 0.5474 5.23 px

Bicycles 0.2509 2.18 px 0.2321 3.14 px
All objects 0.7267 2.97 px 0.5029 5.10 px

Table 3. CLEAR Metrics for the videos. All results are shown
separated by type and together. Boldface indicates best results.
Sherb refers to the Sherbrooke video and Rene-L. refers to the
Rene-Levesque video.

In order to evaluate the sensibility to parameters, both al-
gorithms were run on each video using the parameters used
previously in the other videos. These results are reported in
table 4. Results were not reported for TI on the Sherbrooke
video since the parameters were taking into account a ho-
mography and this homography is not applicable to other
scenes.

As we can see, parameter choice has less impact on the
results of UT than TI. The most significant change in accu-
racy comes from the use of Rene-Levesque’s parameters on
the Rouen video. This can be explained by the high frag-
mentation in the Rouen video that is not taken into account
in the parameters of the Rene-Levesque video. The preci-
sion of UT is only slightly affected by the change of pa-
rameters. For TI, we can see the importance of the choice
of parameters. When using the St-Marc and Rene-Levesque
parameters on the Sherbrooke video, the accuracy drops sig-
nificantly. Although it is has been shown that TI is less
sensitive to parameters when using homographies [15], TI
needs different grouping and segmentation parameters to
deal with objects of different sizes: without classification
and different sets of parameters for different object types,
its accuracy is therefore significantly affected in scenes with
objects of different sizes, leading to overgrouping and un-
dergrouping of objects.

5. Conclusion
This paper presented Urban Tracker, a new tracking al-

gorithm based on recent binary descriptors and background
subtraction technique. The combination of both methods



Sherbrooke parameters
UT TI [15]

Video MOTA MOTP MOTA MOTP
Rouen 0.7697 ⇓ 5.37% 14.28 px ⇑ 1.19 px N/A N/A

St-Marc 0.7567 ≈ 0.00% 5.97 px ≈ 0.00 px N/A N/A
Rene-L. 0.7261 ⇓ 0.06% 2.80 px ⇓ 0.17 px N/A N/A

Rouen parameters
UT TI [15]

Video MOTA MOTP MOTA MOTP
Sherb. 0.7807 ⇑ 0.36% 8.69 px ⇑ 0.03 px 0.3794 ⇓ 0.47% 13.80 px ⇑ 6.26 px

St-Marc 0.6952 ⇓ 2.03% 7.07 px ⇑ 0.72 px 0.4219 ⇓ 18.0% 20.93 px ⇑ 6.35 px
Rene-L. 0.6741 ⇓ 5.26% 3.04 px ⇑ 0.07 px 0.3055 ⇓ 19.7% 5.77 px ⇑ 0.67 px

St-Marc parameters
UT TI [15]

Video MOTA MOTP MOTA MOTP
Sherb. 0.7771 ≈ 0.00% 8.66 px ≈ 0.00 px -0.8599 ⇓ 124.40% 19.90 px ⇑ 12.36 px
Rouen 0.7697 ⇓ 5.37% 14.28 px ⇑ 1.19 px 0.4427 ⇓ 14.58% 30.64 px ⇑ 6.44 px

Rene-L. 0.7261 ⇓ 0.06% 2.80 px ⇓ 0.17 px 0.2056 ⇓ 29.73% 5.95 px ⇑ 0.85 px

Rene-Levesque parameters
UT TI [15]

Video MOTA MOTP MOTA MOTP
Sherb. 0.7787 ⇑ 0.16% 9.25 px ⇑ 0.59 px -0.5029 ⇓ 88.70% 17.29 px ⇑ 9.75 px
Rouen 0.7122 ⇓ 11.12% 15.59 px ⇑ 2.50 px 0.5173 ⇓ 7.12% 34.17 px ⇑ 9.97 px

St-Marc 0.6781 ⇓ 7.86% 7.74 px ⇑ 1.77 px 0.3352 ⇓ 26.66% 16.78 px ⇑ 2.20 px

Table 4. Results obtained by using the same parameters for all
videos. For each column, the number on the left of the arrow
represents the results and the number on the right represents the
difference between the MOTA and the MOTP for the optimized
set of parameters and the scene specific parameters. The MOTA
difference is express in percent points. For the MOTA column, a ⇓
represents a lower tracking accuracy while for the MOTP column,
a ⇑ represents a lower tracking precision.

allows us to track road users independently of their size
and type. Experimental results show that it performs bet-
ter than a current state of the art tracker for urban traffic
scenes and pedestrians on four real urban traffic videos.
Our main contribution is a new tracker designed specifi-
cally for urban tracking that requires no prior knowledge
(camera calibration) while needing very few intuitive pa-
rameter adjustments. To improve object localization in case
of partial occlusion, we also proposed a bounding box es-
timation method. Results show balanced performance for
the tracking of pedestrians, bicycles and vehicles. Finally,
we also propose four new public urban videos with annota-
tions and a metrics evaluation tool in order to inspire other
to work on urban tracking since it is still an open problem
in the general case. These videos and tools are available on:
http://www.jpjodoin.com/urbantracker/.
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